Exercise 5.1
1. In which of the following situations, does the list of numbers involved make as arithmetic progression and why?
(i) The taxi fare after each km when the fare is Rs 15 for the first km and Rs 8 for each additional km.
Answer:
It can be observed that
Taxi fare for 1st km = 15
Taxi fare for first 2 km = 15 + 8 = 23
Taxi fare for first 3 km = 23 + 8 = 31
Taxi fare for first 4 km = 31 + 8 = 39
Clearly 15, 23, 31, 39 … forms an A.P. because every term is 8 more than the preceding term.
(ii) The amount of air present in a cylinder when a vacuum pump removes 1/4 of the air remaining in the cylinder at a time.
Answer:
Let the initial volume of air in a cylinder be V litres. In each stroke, the vacuum pump removes 1/4 of air remaining in the cylinder at a time. In other words, after every stroke, only 1 – 1/4 = 3/4th part of air will remain.
Therefore, volumes will be V, 3V/4 , (3V/4)2 , (3V/4)3…
Clearly, it can be observed that the adjacent terms of this series do not have the same difference between them. Therefore, this is not an A.P.
(iii) The cost of digging a well after every metre of digging, when it costs Rs 150 for the first metre and rises by Rs 50 for each subsequent metre.
Answer:
Cost of digging for first metre = 150
Cost of digging for first 2 metres = 150 + 50 = 200
Cost of digging for first 3 metres = 200 + 50 = 250
Cost of digging for first 4 metres = 250 + 50 = 300
Clearly, 150, 200, 250, 300 … forms an A.P. because every term is 50 more than the preceding term.
(iv) The amount of money in the account every year, when Rs 10000 is deposited at compound interest at 8% per annum.
Answer:
We know that if Rs P is deposited at r% compound interest per annum for n years, our money will be 
Therefore, after every year, our money will be
It is not an arithmetic progression because (2) − (1) ≠(3) − (2)
(Difference between consecutive terms is not equal)
Therefore, it is not an Arithmetic Progression.
2. Write first four terms of the A.P. when the first term a and the common differenced are given as follows
(i) a = 10, d = 10
(ii) a = -2, d = 0
(iii) a = 4, d = – 3
(iv) a = -1 d = 1/2
(v) a = – 1.25, d = – 0.25
Answer:
(i) a = 10, d = 10
Let the series be a1, a2, a3, a4, a5 …
a1 = a = 10
a2 = a1 + d = 10 + 10 = 20
a3 = a2 + d = 20 + 10 = 30
a4 = a3 + d = 30 + 10 = 40
a5 = a4 + d = 40 + 10 = 50
Therefore, the series will be 10, 20, 30, 40, 50 …
First four terms of this A.P. will be 10, 20, 30, and 40.
(ii) a = – 2, d = 0
Let the series be a1, a2, a3, a4 …
a1 = a = -2
a2 = a1 + d = – 2 + 0 = – 2
a3 = a2 + d = – 2 + 0 = – 2
a4 = a3 + d = – 2 + 0 = – 2
Therefore, the series will be – 2, – 2, – 2, – 2 …
First four terms of this A.P. will be – 2, – 2, – 2 and – 2.
(iii) a = 4, d = – 3
Let the series be a1, a2, a3, a4 …
a1 = a = 4
a2 = a1 + d = 4 – 3 = 1
a3 = a2 + d = 1 – 3 = – 2
a4 = a3 + d = – 2 – 3 = – 5
Therefore, the series will be 4, 1, – 2 – 5 …
First four terms of this A.P. will be 4, 1, – 2 and – 5.
(iv) a = – 1, d = 1/2
Let the series be a1, a2, a3, a4 …a1 = a = -1
a2 = a1 + d = -1 + 1/2 = -1/2
a3 = a2 + d = -1/2 + 1/2 = 0
a4 = a3 + d = 0 + 1/2 = 1/2
Clearly, the series will be-1, -1/2, 0, 1/2
First four terms of this A.P. will be -1, -1/2, 0 and 1/2.
(v) a = – 1.25, d = – 0.25
Let the series be a1, a2, a3, a4 …
a1 = a = – 1.25
a2 = a1 + d = – 1.25 – 0.25 = – 1.50
a3 = a2 + d = – 1.50 – 0.25 = – 1.75
a4 = a3 + d = – 1.75 – 0.25 = – 2.00
Clearly, the series will be 1.25, – 1.50, – 1.75, – 2.00 ……..
First four terms of this A.P. will be – 1.25, – 1.50, – 1.75 and – 2.00.
3. For the following A.P.s, write the first term and the common difference.
(i) 3, 1, – 1, – 3 …
(ii) -5, – 1, 3, 7 …
(iii) 1/3, 5/3, 9/3, 13/3 ….
(iv) 0.6, 1.7, 2.8, 3.9 …
Answer:
(i) 3, 1, – 1, – 3 …
Here, first term, a = 3
Common difference, d = Second term – First term
= 1 – 3 = – 2
(ii) – 5, – 1, 3, 7 …
Here, first term, a = – 5
Common difference, d = Second term – First term
= ( – 1) – ( – 5) = – 1 + 5 = 4
(iii) 1/3, 5/3, 9/3, 13/3 ….
Here, first term, a = 1/3
Common difference, d = Second term – First term
= 5/3 – 1/3 = 4/3
(iv) 0.6, 1.7, 2.8, 3.9 …
Here, first term, a = 0.6
Common difference, d = Second term – First term
= 1.7 – 0.6
= 1.1
4. Which of the following are APs? If they form an A.P. find the common difference d and write three more terms.
(i) 2, 4, 8, 16 …
(ii) 2, 5/2, 3, 7/2 ….
(iii) -1.2, -3.2, -5.2, -7.2 …
(iv) -10, – 6, – 2, 2 …
(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2
(vi) 0.2, 0.22, 0.222, 0.2222 ….
(vii) 0, – 4, – 8, – 12 …
(viii) -1/2, -1/2, -1/2, -1/2 ….
(ix) 1, 3, 9, 27 …
(x) a, 2a, 3a, 4a …
(xi) a, a2, a3, a4 …
(xii) √2, √8, √18, √32 …
(xiii) √3, √6, √9, √12 …
(xiv) 12, 32, 52, 72 …
(xv) 12, 52, 72, 73 …
Answer:
(i) 2, 4, 8, 16 …
Here,
a2 – a1 = 4 – 2 = 2
a3 – a2 = 8 – 4 = 4
a4 – a3 = 16 – 8 = 8
⇒ an+1 – an is not the same every time.
Therefore, the given numbers are forming an A.P.
(ii) 2, 5/2, 3, 7/2 ….
Here,
a2 – a1 = 5/2 – 2 = 1/2
a3 – a2 = 3 – 5/2 = 1/2
a4 – a3 = 7/2 – 3 = 1/2
⇒ an+1 – an is same every time.
Therefore, d = 1/2 and the given numbers are in A.P.
Three more terms are
a5 = 7/2 + 1/2 = 4
a6 = 4 + 1/2 = 9/2
a7 = 9/2 + 1/2 = 5
(iii) -1.2, – 3.2, -5.2, -7.2 …
Here,
a2 – a1 = ( -3.2) – ( -1.2) = -2
a3 – a2 = ( -5.2) – ( -3.2) = -2
a4 – a3 = ( -7.2) – ( -5.2) = -2
⇒ an+1 – an is same every time.
Therefore, d = -2 and the given numbers are in A.P.
Three more terms are
a5 = – 7.2 – 2 = – 9.2
a6 = – 9.2 – 2 = – 11.2
a7 = – 11.2 – 2 = – 13.2
(iv) -10, – 6, – 2, 2 …
Here,
a2 – a1 = (-6) – (-10) = 4
a3 – a2 = (-2) – (-6) = 4
a4 – a3 = (2) – (-2) = 4
⇒ an+1 – an is same every time.
Therefore, d = 4 and the given numbers are in A.P.
Three more terms are
a5 = 2 + 4 = 6
a6 = 6 + 4 = 10
a7 = 10 + 4 = 14
(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2
Here,
a2 – a1 = 3 + √2 – 3 = √2
a3 – a2 = (3 + 2√2) – (3 + √2) = √2
a4 – a3 = (3 + 3√2) – (3 + 2√2) = √2
⇒ an+1 – an is same every time.
Therefore, d = √2 and the given numbers are in A.P.
Three more terms are
a5 = (3 + √2) + √2 = 3 + 4√2
a6 = (3 + 4√2) + √2 = 3 + 5√2
a7 = (3 + 5√2) + √2 = 3 + 6√2
(vi) 0.2, 0.22, 0.222, 0.2222 ….
Here,
a2 – a1 = 0.22 – 0.2 = 0.02
a3 – a2 = 0.222 – 0.22 = 0.002
a4 – a3 = 0.2222 – 0.222 = 0.0002
⇒ an+1 – an is not the same every time.
Therefore, the given numbers are forming an A.P.
(vii) 0, -4, -8, -12 …
Here,
a2 – a1 = (-4) – 0 = -4
a3 – a2 = (-8) – (-4) = -4
a4 – a3 = (-12) – (-8) = -4
⇒ an+1 – an is same every time.
Therefore, d = -4 and the given numbers are in A.P.
Three more terms are
a5 = -12 – 4 = -16
a6 = -16 – 4 = -20
a7 = -20 – 4 = -24
(viii) -1/2, -1/2, -1/2, -1/2 ….
Here,
a2 – a1 = (-1/2) – (-1/2) = 0
a3 – a2 = (-1/2) – (-1/2) = 0
a4 – a3 = (-1/2) – (-1/2) = 0
⇒ an+1 – an is same every time.
Therefore, d = 0 and the given numbers are in A.P.
Three more terms are
a5 = (-1/2) – 0 = -1/2
a6 = (-1/2) – 0 = -1/2
a7 = (-1/2) – 0 = -1/2
(ix) 1, 3, 9, 27 …
Here,
a2 – a1 = 3 – 1 = 2
a3 – a2 = 9 – 3 = 6
a4 – a3 = 27 – 9 = 18
⇒ an+1 – an is not the same every time.
Therefore, the given numbers are forming an A.P.
(x) a, 2a, 3a, 4a …
Here,
a2 – a1 = 2a – a = a
a3 – a2 = 3a – 2a = a
a4 – a3 = 4a – 3a = a
⇒ an+1 – an is same every time.
Therefore, d = a and the given numbers are in A.P.
Three more terms are
a5 = 4a + a = 5a
a6 = 5a + a = 6a
a7 = 6a + a = 7a
(xi) a, a2, a3, a4 …
Here,
a2 – a1 = a2 – a = (a – 1)
a3 – a2 = a3 – a2 = a2 (a – 1)
a4 – a3 = a4 – a3 = a3(a – 1)
⇒ an+1 – an is not the same every time.
Therefore, the given numbers are forming an A.P.
(xii) √2, √8, √18, √32 …
Here,
a2 – a1 = √8 – √2 = 2√2 – √2 = √2
a3 – a2 = √18 – √8 = 3√2 – 2√2 = √2
a4 – a3 = 4√2 – 3√2 = √2
⇒ an+1 – an is same every time.
Therefore, d = √2 and the given numbers are in A.P.
Three more terms are
a5 = √32 + √2 = 4√2 + √2 = 5√2 = √50
a6 = 5√2 +√2 = 6√2 = √72
a7 = 6√2 + √2 = 7√2 = √98
(xiii) √3, √6, √9, √12 …
Here,
a2 – a1 = √6 – √3 = √3 × 2 -√3 = √3(√2 – 1)
a3 – a2 = √9 – √6 = 3 – √6 = √3(√3 – √2)
a4 – a3 = √12 – √9 = 2√3 – √3 × 3 = √3(2 – √3)
⇒ an+1 – an is not the same every time.
Therefore, the given numbers are forming an A.P.
(xiv) 12, 32, 52, 72 …
Or, 1, 9, 25, 49 …..
Here,
a2 − a1 = 9 − 1 = 8
a3 − a2 = 25 − 9 = 16
a4 − a3 = 49 − 25 = 24
⇒ an+1 – an is not the same every time.
Therefore, the given numbers are forming an A.P.
(xv) 12, 52, 72, 73 …
Or 1, 25, 49, 73 …
Here,
a2 − a1 = 25 − 1 = 24
a3 − a2 = 49 − 25 = 24
a4 − a3 = 73 − 49 = 24
i.e., ak+1 − ak is same every time.
⇒ an+1 – an is same every time.
Therefore, d = 24 and the given numbers are in A.P.
Three more terms are
a5 = 73+ 24 = 97
a6 = 97 + 24 = 121
a7 = 121 + 24 = 145
Exercise 5.2
1. Find the missing variable from a, d, n and an, where a is the first term, d is the common difference and an is the nth term of AP.
(i) a = 7, d = 3, n = 8
(ii) a = –18, n = 10, an=0
(iii) d = –3, n = 18, an=-5
(iv) a = –18.9, d = 2.5, an=-3.6
(v) a = 3.5, d = 0, n = 105
Answer:
(i) a = 7, d = 3, n = 8
We know that,
= 7 + (8 − 1) 3
= 7 + (7) 3
= 7 + 21 = 28
(ii) a = –18, n= 10, 
We need to find d here.
Using formula 
Putting values of a,n and
,
0 = –18 + (10 – 1) d
⇒ 0 = −18 + 9d
⇒ 18 = 9d ⇒ d = 2
(iii) d = –3, n = 18, 
We need to find a here.
Using formula 
Putting values of d,
,
–5 = a + (18 – 1) (–3)
⇒ −5 = a + (17) (−3)
⇒ −5 = a – 51 ⇒ a = 46
(iv) a = –18.9, d = 2.5, 
We need to find n here.
Using formula 
Putting values of d, a,and
,
3.6 = –18.9 + (n – 1) (2.5)
⇒ 3.6 = −18.9 + 2.5n − 2.5
⇒ 2.5n = 25 ⇒ n = 10
(v) a = 3.5, d = 0, n = 105
We need to find
here.
Using formula 
Putting values of d, n and a,
an = 3.5 + (105 − 1) (0)
⇒
2. Choose the correct choice in the following and justify:
(i) 30th term of the AP: 10, 7, 4… is
(A) 97
(B) 77
(C) –77
(D) –87
(ii) 11th term of the AP: −3, −12, 2… is
(A) 28
(B) 22
(C) –38
(D) 
Answer:
(i) 10, 7, 4…
First term = a = 10, Common difference = d = 7 – 10 = 4 – 7 = –3
And n = 30{Because, we need to find 30th term}
⇒
= 10 + (30 − 1) (−3) = 10 – 87 = −77
Therefore, the answer is (C).
(ii) −3, −½, 2…
First term = a = –3, Common difference = d = −
− (−3) = 
And n = 11 (Because, we need to find 11th term)
= −3 + (11 – 1)
= −3 + 25 = 22
Therefore 11th term is 22 which means answer is (B).
3. In the following AP’s find the missing terms:
(i) 2, __ , 26
(ii) __, 13, __, 3
(iii) 5, __, __, 
(iv) –4. __, __, __, __, 6
(v) __, 38, __, __, __, –22
Answer:
(i) For this A.P.,
a = 2
a3 = 26
We know that, an = a + (n − 1) d
a3 = 2 + (3 – 1) d
26 = 2 + 2d
24 = 2d
d = 12
a2 = 2 + (2 – 1) 12
= 14
Therefore, 14 is the missing term.
(ii) For this A.P.,
a2 = 13 and
a4 = 3
We know that, an = a + (n − 1) d
a2 = a + (2 – 1) d
13 = a + d … (i)
a4 = a + (4 – 1) d
3 = a + 3d … (ii)
On subtracting (i) from (ii), we get
– 10 = 2d
d = – 5
From equation (i), we get
13 = a + (-5)
a = 18
a3 = 18 + (3 – 1) (-5)
= 18 + 2 (-5) = 18 – 10 = 8
Therefore, the missing terms are 18 and 8 respectively.
(iii) For this A.P.,
a = 5 and
a4 = 19/2
We know that, an = a + (n − 1) d
a4 = a + (4 – 1) d
19/2 = 5 + 3d
19/2 – 5 = 3d3d = 9/2
d = 3/2
a2 = a + (2 – 1) d
a2 = 5 + 3/2
a2 = 13/2
a3 = a + (3 – 1) d
a3 = 5 + 2×3/2
a3 = 8
Therefore, the missing terms are 13/2 and 8 respectively.
(iv) For this A.P.,
a = −4 and
a6 = 6
We know that,
an = a + (n − 1) d
a6 = a + (6 − 1) d
6 = − 4 + 5d
10 = 5d
d = 2
a2 = a + d = − 4 + 2 = −2
a3 = a + 2d = − 4 + 2 (2) = 0
a4 = a + 3d = − 4 + 3 (2) = 2
a5 = a + 4d = − 4 + 4 (2) = 4
Therefore, the missing terms are −2, 0, 2, and 4 respectively.
(v)For this A.P.,
a2 = 38
a6 = −22
We know that
an = a + (n − 1) d
a2 = a + (2 − 1) d
38 = a + d … (i)
a6 = a + (6 − 1) d
−22 = a + 5d … (ii)
On subtracting equation (i) from (ii), we get
− 22 − 38 = 4d
−60 = 4d
d = −15
a = a2 − d = 38 − (−15) = 53
a3 = a + 2d = 53 + 2 (−15) = 23
a4 = a + 3d = 53 + 3 (−15) = 8
a5 = a + 4d = 53 + 4 (−15) = −7
Therefore, the missing terms are 53, 23, 8, and −7 respectively.
4. Which term of the A.P. 3, 8, 13, 18, … is 78?
Answer:
3, 8, 13, 18, …
For this A.P.,
a = 3
d = a2 − a1 = 8 − 3 = 5
Let nth term of this A.P. be 78.
an = a + (n − 1) d
78 = 3 + (n − 1) 5
75 = (n − 1) 5
(n − 1) = 15
n = 16
Hence, 16th term of this A.P. is 78.
5. Find the number of terms in each of the following APs:
(i) 7, 13, 19…., 205
(ii) 18,
, 13…, −47
Answer:
(i) For this A.P.,
a = 7
d = a2 − a1 = 13 − 7 = 6
Let there are n terms in this A.P.
an = 205
We know that
an = a + (n − 1) d
Therefore, 205 = 7 + (n − 1) 6
198 = (n − 1) 6
33 = (n − 1)
n = 34
Therefore, this given series has 34 terms in it.
(ii) 18,
, 13 …, −47
First term = a =18, Common difference = d =
Using formula
, to find nth term of arithmetic progression,
−47 = 18 + (n − 1) 
= 
Therefore, there are 27 terms in the given arithmetic progression.
6. Check whether -150 is a term of the A.P. 11, 8, 5, 2, …
Answer:
For this A.P.,
a = 11
d = a2 − a1 = 8 − 11 = −3
Let −150 be the nth term of this A.P.
We know that,
an = a + (n − 1) d
-150 = 11 + (n – 1)(-3)
-150 = 11 – 3n + 3
-164 = -3n
n = 164/3
Clearly, n is not an integer.
Therefore, – 150 is not a term of this A.P.
7. Find the 31st term of an A.P. whose 11th term is 38 and the 16th term is 73.
Answer:
Given that,
a11 = 38
a16 = 73
We know that,
an = a + (n − 1) d
a11 = a + (11 − 1) d
38 = a + 10d … (i) Similarly,
a16 = a + (16 − 1) d
73 = a + 15d … (ii)
On subtracting (i) from (ii), we get
35 = 5d
d = 7
From equation (i),
38 = a + 10 × (7)
38 − 70 = a
a = −32
a31 = a + (31 − 1) d
= − 32 + 30 (7)
= − 32 + 210
= 178
Hence, 31st term is 178.
8. An A.P. consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 29th term.
Answer:
Given that,
a3 = 12
a50 = 106
We know that,
an = a + (n − 1) d
a3 = a + (3 − 1) d
12 = a + 2d … (i)
Similarly, a50 = a + (50 − 1) d
106 = a + 49d … (ii)
On subtracting (i) from (ii), we get
94 = 47d
d = 2
From equation (i), we get
12 = a + 2 (2)
a = 12 − 4 = 8
a29 = a + (29 − 1) d
a29 = 8 + (28)2
a29 = 8 + 56 = 64
Therefore, 29th term is 64.
9. If the 3rd and the 9th terms of an A.P. are 4 and − 8 respectively. Which term of this A.P. is zero.
Answer:
Given that,
a3 = 4
a9 = −8
We know that,
an = a + (n − 1) d
a3 = a + (3 − 1) d
4 = a + 2d … (i)
a9 = a + (9 − 1) d
−8 = a + 8d … (ii)
On subtracting equation (i) from (ii), we get,
−12 = 6d
d = −2
From equation (i), we get,
4 = a + 2 (−2)
4 = a − 4
a = 8
Let nth term of this A.P. be zero.
an = a + (n − 1) d
0 = 8 + (n − 1) (−2)
0 = 8 − 2n + 2
2n = 10
n = 5
Hence, 5th term of this A.P. is 0.
10. If 17th term of an A.P. exceeds its 10th term by 7. Find the common difference.
Answer:
We know that,
For an A.P., an = a + (n − 1) d
a17 = a + (17 − 1) d
a17 = a + 16d
Similarly, a10 = a + 9d
It is given that
a17 − a10 = 7
(a + 16d) − (a + 9d) = 7
7d = 7
d = 1
Therefore, the common difference is 1.
11. Which term of the A.P. 3, 15, 27, 39, … will be 132 more than its 54th term?
Answer:
Given A.P. is 3, 15, 27, 39, …
a = 3
d = a2 − a1 = 15 − 3 = 12
a54 = a + (54 − 1) d
= 3 + (53) (12)
= 3 + 636 = 639
132 + 639 = 771
We have to find the term of this A.P. which is 771.
Let nth term be 771.
an = a + (n − 1) d
771 = 3 + (n − 1) 12
768 = (n − 1) 12
(n − 1) = 64
n = 65
Therefore, 65th term was 132 more than 54th term.
12. Two APs have the same common difference. The difference between their 100th term is 100, what is the difference between their 1000th terms?
Answer:
Let the first term of these A.P.s be a1 and a2 respectively and the common difference of these A.P.s be d.
For first A.P.,
a100 = a1 + (100 − 1) d
= a1 + 99d
a1000 = a1 + (1000 − 1) d
a1000 = a1 + 999d
For second A.P.,
a100 = a2 + (100 − 1) d
= a2 + 99d
a1000 = a2 + (1000 − 1) d
= a2 + 999d
Given that, difference between
100th term of these A.P.s = 100
Therefore, (a1 + 99d) − (a2 + 99d) = 100
a1 − a2 = 100 … (i)
Difference between 1000th terms of these A.P.s
(a1 + 999d) − (a2 + 999d) = a1 − a2
From equation (i),
This difference, a1 − a2 = 100
Hence, the difference between 1000th terms of these A.P. will be 100.
13. How many three digit numbers are divisible by 7?
Answer:
First three-digit number that is divisible by 7 = 105
Next number = 105 + 7 = 112
Therefore, 105, 112, 119, …
All are three digit numbers which are divisible by 7 and thus, all these are terms of an A.P. having first term as 105 and common difference as 7.
The maximum possible three-digit number is 999. When we divide it by 7, the remainder will be 5. Clearly, 999 − 5 = 994 is the maximum possible three-digit number that is divisible by 7.
The series is as follows.
105, 112, 119, …, 994
Let 994 be the nth term of this A.P.
a = 105
d = 7
an = 994
n = ?
an = a + (n − 1) d
994 = 105 + (n − 1) 7
889 = (n − 1) 7
(n − 1) = 127
n = 128
Therefore, 128 three-digit numbers are divisible by 7.
14. How many multiples of 4 lie between 10 and 250?
Answer:
First multiple of 4 that is greater than 10 is 12. Next will be 16.
Therefore, 12, 16, 20, 24, …
All these are divisible by 4 and thus, all these are terms of an A.P. with first term as 12 and common difference as 4.
When we divide 250 by 4, the remainder will be 2. Therefore, 250 − 2 = 248 is divisible by 4.
The series is as follows.
12, 16, 20, 24, …, 248
Let 248 be the nth term of this A.P.
a = 12
d = 4
an = 248
an = a + (n – 1) d
248 = 12 + (n – 1) × 4
236/4 = n – 1
59 = n – 1
n = 60
Therefore, there are 60 multiples of 4 between 10 and 250.
15. For what value of n, are the nth terms of two APs 63, 65, 67, and 3, 10, 17, … equal?
Answer:
63, 65, 67, …
a = 63
d = a2 − a1 = 65 − 63 = 2
nth term of this A.P. = an = a + (n − 1) d
an= 63 + (n − 1) 2 = 63 + 2n − 2
an = 61 + 2n … (i)
3, 10, 17, …
a = 3
d = a2 − a1 = 10 − 3 = 7
nth term of this A.P. = 3 + (n − 1) 7
an = 3 + 7n − 7
an = 7n − 4 … (ii)
It is given that, nth term of these A.P.s are equal to each other.
Equating both these equations, we obtain
61 + 2n = 7n − 4
61 + 4 = 5n
5n = 65
n = 13
Therefore, 13th terms of both these A.P.s are equal to each other.
16. Determine the A.P. whose third term is 16 and the 7th term exceeds the 5th term by 12.
Answer:
a3 = 16
a + (3 − 1) d = 16
a + 2d = 16 … (i)
a7 − a5 = 12
[a+ (7 − 1) d] − [a + (5 − 1) d]= 12
(a + 6d) − (a + 4d) = 12
2d = 12
d = 6
From equation (i), we get,
a + 2 (6) = 16
a + 12 = 16
a = 4
Therefore, A.P. will be
4, 10, 16, 22, …
17. Find the 20th term from the last term of the A.P. 3, 8, 13, …, 253.
Answer:
Given A.P. is
3, 8, 13, …, 253
Common difference for this A.P. is 5.
Therefore, this A.P. can be written in reverse order as
253, 248, 243, …, 13, 8, 5
For this A.P.,
a = 253
d = 248 − 253 = −5
n = 20
a20 = a + (20 − 1) d
a20 = 253 + (19) (−5)
a20 = 253 − 95
a = 158
Therefore, 20th term from the last term is 158.
18. The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the A.P.
Answer:
We know that,
an = a + (n − 1) d
a4 = a + (4 − 1) d
a4 = a + 3d
Similarly,
a8 = a + 7d
a6 = a + 5d
a10 = a + 9d
Given that, a4 + a8 = 24
a + 3d + a + 7d = 24
2a + 10d = 24
a + 5d = 12 … (i)
a6 + a10 = 44
a + 5d + a + 9d = 44
2a + 14d = 44
a + 7d = 22 … (ii)
On subtracting equation (i) from (ii), we get,
2d = 22 − 12
2d = 10
d = 5
From equation (i), we get
a + 5d = 12
a + 5 (5) = 12
a + 25 = 12
a = −13
a2 = a + d = − 13 + 5 = −8
a3 = a2 + d = − 8 + 5 = −3
Therefore, the first three terms of this A.P. are −13, −8, and −3.
19. Subba Rao started work in 1995 at an annual salary of Rs 5000 and received an increment of Rs 200 each year. In which year did his income reach Rs 7000?
Answer:
It can be observed that the incomes that Subba Rao obtained in various years are in A.P. as every year, his salary is increased by Rs 200.
Therefore, the salaries of each year after 1995 are
5000, 5200, 5400, …
Here, a = 5000
d = 200
Let after nth year, his salary be Rs 7000.
Therefore, an = a + (n − 1) d
7000 = 5000 + (n − 1) 200
200(n − 1) = 2000
(n − 1) = 10
n = 11
Therefore, in 11th year, his salary will be Rs 7000.
20. Ramkali saved Rs 5 in the first week of a year and then increased her weekly saving by Rs 1.75. If in the nth week, her week, her weekly savings become Rs 20.75, find n.
Answer:
Given that,
a = 5
d = 1.75
an = 20.75
n = ?
an = a + (n − 1) d
20.75 = 5 + (n – 1) × 1.75
15.75 = (n – 1) × 1.75
(n – 1) = 15.75/1.75 = 1575/175
= 63/7 = 9
n – 1 = 9
n = 10
Hence, n is 10.